GSM против NMT

NMT
NMT — один из самых старых стандартов сотовой связи, разработан в 1978 году и впервые введен в эксплуатацию в 1981. Изначально стандарт разрабатывался для Скандинавии с ее большой территорией и малой плотностью населения. Именно поэтому этот стандарт получил такое распространение как в Беларуси, так и в России — уж слишком схожи условия эксплуатации. Стандарт NMT является аналоговым и относится к группе FDMA (Frequency Division Multiplie Access, Множественный Доступ с Частотным Разделением) стандартов сотовой связи. У данной группы стандартов немало недостатков, но и достаточно много преимуществ по сравнению с другими группами (TDMA и CDMA). Основное и главное преимущество — большой радиус действия базовой станции. Это очень подходит для условий Беларуси, так как это в итоге должно удешевить эксплуатацию таких сетей. Судите сами, вполне приличная связь в 70-ти км от базовой станции — не редкость для NMT. А чем меньше базовых станций, тем меньше оператору надо затрачивать средств на закупку оборудования, тем меньше должны быть тарифные ставки вследствие уменьшения себестоимости.
Если сравнивать с GSM-900, то по определению телефон не может работать на расстоянии более 35 км от базовой станции. Главный же недостаток NMT-450 — значительный уровень помех в диапазоне 450 МГц в крупных промышленных городах. Но стоит удалиться от города — качество связи сильно улучшается и зачастую превосходит качество проводных телефонных сетей. NMT использует диапазон частот 453--468 МГц. В этом случае предоставляется значительно большая по сравнению с другими стандартами площадь обслуживания одной базовой станции, а также большая мощность излучения телефона (больше чем у GSM почти в 10 раз).

Каждому абоненту для разговора предоставляется в полное распоряжение отдельный полнодуплексный радиоканал. Рабочие частоты находятся в двух полосах: 453-457, 5 МГц для канала от сотового телефона к базовой станции и 463-467, 5 МГц для канала от базовой станции к телефону. Частотный разнос каналов приема и передачи — 10 МГц. Изначально в NMT использовалась сетка каналов с шагом 25 КГц, но с увеличением количества абонентов шаг сетки уменьшили до 12,5 КГц, вставив между обычными каналами дополнительные, увеличив тем самым емкость сети.
Базовые станции сети NMT объединены в группы, называемые TA (traffic area). Каждая TA управляется своим коммутатором. При включении телефона или при пересечении границы TA телефон пытается зарегистрироваться в новой TA. Для общения с коммутатором используется служебный канал связи, по которому передаются данные. После того как телефон зарегистрировался в TA, он переходит в состояние ожидания вызова, а коммутатор запоминает, что данный абонент находится в его TA. В состоянии ожидания вызова телефон периодически включает приемник для отслеживания уровня сигнала от базовой станции, и если он падает ниже определенного предела, телефон пытается найти другой служебный канал или другую базовую станцию с более сильным сигналом; если таковая находится, он слушает уже ее. Если при перемещении изменилась TA, то телефон перерегистрируется. При этом коммутатор предыдущей TA "вычеркивает" этот аппарат из своего списка. Перерегистрация аппарата иногда заканчивается неудачно (обычно при высоком уровне помех или при переходе в зону другого оператора сети NMT), в этом случае телефон предлагает включить роуминг. Чтобы исправить положение достаточно подтвердить "роуминг" или позвонить — телефон повторно попытается договориться с коммутатором и все встанет на свои места. Вроде бы ничего страшного, однако, в то время, когда телефон не зарегистрирован, дозвонится на него невозможно. Сеть просто не знает, где находится этот телефон.

Сигнал вызова абонента поступает сразу на все базовые станции той TA, в которой зарегистрирован телефон. При ответе на звонок или при совершении исходящего звонка телефон переключается на разговорный канал, чтобы освободить служебный канал для других абонентов. Если телефон поддерживает "мелкую" сетку каналов 12,5 КГц, то в течение 2-3-х секунд происходит переключение на дополнительный "интерливный" канал — это и есть тот самый знаменитый "хрюк" в начале разговора. В процессе разговора коммутатор отслеживает качество связи, заставляя БС посылать телефону так называемый Phi-тон. Телефон "заворачивает" Phi-тон обратно на базовую станцию, которая вычисляет отношение сигнал/шум в канале связи, и если оно падает ниже допустимого предела, то Phi-тоны (3955, 3985, 4015 и 4045 Гц) посылаются с других базовых станций и коммутатор, сравнив эти величины, переключает абонента на базовую станцию с наилучшим отношением сигнал/шум. По окончании разговора телефон вновь переходит в состояние ожидания вызова.
Особо стоит сказать о системе идентификации абонента: до внесения дополнений в стандарт NMT сделать двойника не составляло труда — нужно было просто скопировать данные из EEPROM одного телефона в другой или даже просто выловить из эфира, однако теперь абонентам сетей NMT беспокоиться не о чем. В NMT используется SIS — Subscriber identity security — процедура идентификации, практически не поддающаяся взлому.
Вкратце ее можно описать так: при общении телефона и базовой станции используется процедура идентификации аппарата, использующая необратимую функцию, т.е. данные, которые передаются по эфиру, являются результатом математической операции, и даже получив этот результат, невозможно получить аргументы, использовавшиеся в вычислениях. Примером такой операции может служить вычисление остатка от деления: имея 3 результатом операции "остаток от деления X на 10", невозможно точно определить X, однако при одинаковых X1 и X2 результаты совпадают. Таким образом, даже имея Pentium 4 1,5Ггц, шансы подобрать правильный X ничтожны.
Этим самым X-ом является SAK (secret authentication key) — уникальное для каждого аппарата число, которое используется для кодирования разных данных.

Официально SAK может быть определен по SIS-коду только посредством обращения к общемировой базе данных, которая и ставит в соответствие SIS и SAK.
На самом деле, SAK можно узнать и поковыряв телефон, однако, как вы сами понимаете, это можно сделать только с согласия владельца. Так что если телефон не попадал в чужие руки, можно быть уверенным: двойника нет.
Зная SAK, действительно можно сделать абсолютного двойника зарегистрированного в сети телефона, здесь проблем никаких нет. Однако использовать этого двойника в сети при работающем оригинале практически невозможно. Даже если включить два телефона одновременно, то вы просто услышите на одном из них сигнал о невозможности "прописаться" в сети, и он работать не будет. Кто из двоих — оригинал или двойник зарегистрируется первым — тот и будет работать. Эта ситуация изменится, если работающий экземпляр по каким-то причинам вывалится из сети, а второй в это время попытается за сеть зацепиться.
Так что реально использовать двойника, не имея связи с владельцем оригинала, не получится. Либо владелец оригинала, держа включенным телефон, не даст прописаться в сети, либо, включив телефон и не имея возможности позвонить, поднимет на уши персонал сотового оператора.
С течением времени в стандарт добавлялись различные сервисы и на сегодняшний день NMT выглядит не хуже своих более молодых конкурентов. Это и определение номера, и голосовая почта, факс-почта, конференц-связь, переадресация вызова, SMS, синхронизация часов и т.п. Особенно интересно выглядит SMS в NMT. Это даже интереснее, чем GSM SMS — данные SMS в NMT сетях передаются по разговорному каналу. А значит, их можно принять и декодировать, минуя оператора сотовой связи. Реализовано это следующим образом: в телефоне есть модем. При отправке сообщения телефон звонит по номеру, указанному как "Номер SMS-центра" и своим модемом соединяется с модемом SMS-центра, после чего следует обмен данными по основному (голосовому) каналу: телефон отправляет сообщения, помеченные для отправки, и забирает сообщения от SMS-центра, если там есть сообщения для этого телефона. Софт для организации домашнего SMS-центра уже написан и находится в стадии альфа — тестирования. Возможности просто поражают. Как Вам, например, консоль Linux'а на экранчике сотового телефона? GSM-у до этого еще далеко:))

Итак, сделаем промежуточные выводы по технической части стандарта NMT. Хотя европейцы потихоньку начинают сворачивать сети NMT в своих странах, у NMT неплохие перспективы в Беларуси. В крупных городах NMT, конечно, умрет. Тут и проблемы с помехами, и ограниченное количество каналов на базовой станции. Так что же делать? Покрыть все GSM? У нас — с нашими-то объемами инвестиций — базовых станций не напасешься. Тогда единственный логичный вывод: GSM-операторы обеспечивают связь только в городах и на крупных трассах. Шаг влево, шаг вправо — "нет сети". Вот тут-то и нужен NMT с его покрытием. Значит, пока нет другого выхода NMT — существует.

GSM
Global System for Mobile Communications или просто GSM был разработан в 1990 году. Первый оператор GSM принял абонентов в 1991 году, к началу 1994 года сети, основанные на рассматриваемом стандарте, имели уже 1.3 миллиона подписчиков, а к концу 1995 их число увеличилось до 10 миллионов! Воистину, "GSM шагает по планете" — в настоящее время телефоны этого стандарта имеют около 200 миллионов человек, а GSM-сети можно найти по всему миру. Стандарт GSM подразделяется на GSM-450/900/1800/ 1900 в зависимости от рабочей частоты. В Беларуси стандарт GSM поддерживает пока только Velcom (Мобильная Цифровая Cвязь). У Velcom сеть только GSM-900.
Начнем с самого сложного и, пожалуй, скучного — блок-схемы сети. При описании будут использоваться принятые во всем мире англоязычные сокращения.
Самая простая часть структурной схемы — переносной телефон, состоит из двух частей: собственно "трубки" — МЕ (Mobile Equipment, мобильное устройство) и смарт-карты SIM (Subscriber Identity Module, модуль идентификации абонента), получаемой при заключении контракта с оператором. Как любой автомобиль снабжен уникальным номером кузова, так и сотовый телефон имеет собственный номер — IMEI (International Mobile Equipment Identity, международный идентификатор мобильного устройства), который может передаваться сети по ее запросу. SIM, в свою очередь, содержит так называемый IMSI (International Mobile Subscriber Identity, международный идентификационный номер подписчика). Таким образом, IMEI соответствует конкретному телефону, а IMSI — определенному абоненту.
"Центральной нервной системой" сети является NSS (Network and Switching Subsystem, подсистема сети и коммутации), а компонент, выполняющей функции "мозга" называется MSC (Mobile services Switching Center, центр коммутации). Именно последний все называют "коммутатор", а также, при проблемах со связью, винят во всех смертных грехах. MSC в сети может быть и не один. MSC занимается маршрутизацией вызовов, формированием данных для биллинговой системы, управляет многими процедурами — проще сказать, что не входит в обязанности коммутатора, чем перечислять все его функции.

Следующими по важности компонентами сети, также входящими в NSS, я бы назвал HLR (Home Location Register, реестр собственных абонентов) и VLR (Visitor Location Register, реестр перемещений). Обратите внимание на эти части, в дальнейшем мы будем часто упоминать их. HLR, грубо говоря, представляет собой базу данных обо всех абонентах, заключивших с рассматриваемой сетью контракт. В ней хранится информация о номерах пользователей (под номерами подразумеваются, во-первых, упоминавшийся выше IMSI, а во-вторых, так называемый MSISDN (Mobile Subscriber ISDN), т.е. телефонный номер в его обычном понимании), перечень доступных услуг и многое другое — далее по тексту часто будут описываться параметры, находящиеся в HLR.
В отличие от HLR, который в системе один, VLR`ов может быть и несколько — каждый из них контролирует свою часть сети. В VLR содержатся данные об абонентах, которые находятся на его (и только его!) территории (причем обслуживаются не только свои подписчики, но и зарегистрированные в сети роумеры). Как только пользователь покидает зону действия какого-то VLR, информация о нем копируется в новый VLR, а из старого удаляется. Фактически, между тем, что есть об абоненте в VLR и в HLR, очень много общего — посмотрите таблицы, где приведен перечень долгосрочных (табл.1) и временных (табл.2 и 3) данных об абонентах, хранящихся в этих реестрах. Еще раз об отличии HLR от VLR: в первом расположена информация обо всех подписчиках сети, независимо от их местоположения, а во втором — данные только о тех, кто находится на подведомственной этому VLR территории. В HLR для каждого абонента постоянно присутствует ссылка на тот VLR, который с ним (абонентом) сейчас работает (при этом сам VLR может принадлежать чужой сети, расположенной, например, на другом конце Земли) (Табл. 1.).
NSS содержит еще два компонента — AuC (Authentication Center, центр авторизации) и EIR (Equipment Identity Register, реестр идентификации оборудования). Первый блок используется для процедур установления подлинности абонента, а второй, как следует из названия, отвечает за допуск к эксплуатации в сети только разрешенных сотовых телефонов.

Исполнительной, если так можно выразиться, частью сотовой сети, является BSS (Base Station Subsystem, подсистема базовых станций). Если продолжать аналогию с человеческим организмом, то эту подсистему можно назвать конечностями тела. BSS состоит из нескольких "рук" и "ног" — BSC (Base Station Controller, контроллер базовых станций), а также множества "пальцев" — BTS (Base Transceiver Station, базовая станция). Базовые станции можно наблюдать повсюду — в городах, полях — фактически это просто приемно-передающие устройства, содержащие от одного до шестнадцати излучателей. Каждый BSC контролирует целую группу BTS и отвечает за управление и распределение каналов, уровень мощности базовых станций и тому подобное. Обычно BSC в сети не один, а целое множество (базовых станций же вообще сотни).
Управляется и координируется работа сети с помощью OSS (Operating and Support Subsystem, подсистема управления и поддержки). OSS состоит из всякого рода служб и систем, контролирующих работу и трафик.
При каждом включении телефона после выбора сети начинается процедура регистрации. Рассмотрим наиболее общий случай — регистрацию не в домашней, а в чужой, так называемой гостевой, сети (будем предполагать, что услуга роуминга абоненту разрешена).
Пусть сеть найдена. По запросу сети телефон передает IMSI абонента. IMSI начинается с кода страны "приписки" его владельца, далее следуют цифры, определяющие домашнюю сеть, а уже потом — уникальный номер конкретного подписчика. Например, начало IMSI 25099... соответствует российскому оператору Билайн. (250-Россия, 99 — Билайн). По номеру IMSI VLR гостевой сети определяет домашнюю сеть и связывается с ее HLR. Последний передает всю необходимую информацию об абоненте в VLR, который сделал запрос, а у себя размещает ссылку на этот VLR, чтобы в случае необходимости знать, "где искать" абонента.

Очень интересен процесс определения подлинности абонента. При регистрации AuC домашней сети генерирует 128-битовое случайное число — RAND, пересылаемое телефону. Внутри SIM с помощью ключа Ki (ключ идентификации — так же как и IMSI, он содержится в SIM) и алгоритма идентификации А3 вычисляется 32-битовый ответ — SRES (Signed RESult) по формуле SRES = Ki * RAND. Точно такие же вычисления проделываются одновременно и в AuC (по выбранному из HLR Ki пользователя). Если SRES, вычисленный в телефоне, совпадет со SRES, рассчитанным AuC, то процесс авторизации считается успешным и абоненту присваивается TMSI (Temporary Mobile Subscriber Identity, временный номер мобильного абонента). TMSI служит исключительно для повышения безопасности взаимодействия подписчика с сетью и может периодически меняться (в том числе при смене VLR).
Теоретически, при регистрации должен передаваться и номер IMEI, но у меня есть большие сомнения насчет того, что минский оператор отслеживает IMEI используемых абонентами телефонов. Давайте будем рассматривать некую "идеальную" сеть, функционирующую так, как было задумано создателями GSM. Так вот, при получении IMEI сетью, он направляется в EIR, где сравнивается с так называемыми "списками" номеров. Белый список содержит номера санкционированных к использованию телефонов, черный список состоит из IMEI, украденных или по какой-либо иной причине не допущенных к эксплуатации телефонов, и, наконец, серый список — "трубки" с проблемами, работа которых разрешается системой, но за которыми ведется постоянное наблюдение.

После процедуры идентификации и взаимодействия гостевого VLR с домашним HLR запускается счетчик времени, задающий момент перерегистрации в случае отсутствия каких-либо сеансов связи. Обычно период обязательной регистрации составляет несколько часов.
Перерегистрация необходима для того, чтобы сеть получила подтверждение, что телефон по-прежнему находится в зоне ее действия. Дело в том, что в режиме ожидания "трубка" только отслеживает сигналы, передаваемые сетью, но сама ничего не излучает — процесс передачи начинается только в случае установления соединения, а также при значительных перемещениях относительно сети (ниже это будет рассмотрено подробно) — в таких случаях таймер, отсчитывающий время до следующей перерегистрации, запускается заново. Поэтому при "выпадении" телефона из сети (например, был отсоединен аккумулятор, или владелец аппарата зашел в метро, не выключив телефон) система об этом не узнает.
Все пользователи случайным образом разбиваются на 10 равноправных классов доступа (с номерами от 0 до 9). Кроме того, существует несколько специальных классов с номерами с 11 по 15 (разного рода аварийные и экстренные службы, служебный персонал сети). Информация о классе доступа хранится в SIM. Особый, 10 класс доступа, позволяет совершать экстренные звонки (по номеру 112), если пользователь не принадлежит к какому-либо разрешенному классу, или вообще не имеет IMSI (SIM). В случае чрезвычайных ситуаций или перегрузки сети некоторым классам может быть на время закрыт доступ в сеть.

Как уже было сказано, сеть состоит из множества BTS — базовых станций (одна BTS — одна "сота", ячейка). Для упрощения функционирования системы и снижения служебного трафика, BTS объединяют в группы — домены, получившие название LA (Location Area, область расположения). Каждой LA соответствует свой код LAI (Location Area Identity). Один VLR может контролировать несколько LA. И именно LAI помещается в VLR для задания местоположения мобильного абонента. В случае необходимости именно в соответствующей LA (а не в отдельной соте) будет произведен поиск абонента. При перемещении абонента из одной соты в другую в пределах одной LA перерегистрация и изменение записей в VLR/HLR не производится, но стоит ему (абоненту) попасть на территорию другой LA, как начнется взаимодействие телефона с сетью. При смене LA код старой области стирается из VLR и заменяется новым LAI, если же следующий LA контролируется другим VLR, то произойдет смена VLR и обновление записи в HLR.
Вообще говоря, разбиение сети на LA довольно непростая инженерная задача, решаемая при построении каждой сети индивидуально. Слишком мелкие LA приведут к частым перерегистрациям телефонов и, как следствие, к возрастанию трафика разного рода сервисных сигналов и более быстрой разрядке батарей мобильных телефонов. Если же сделать LA большими, то, в случае необходимости соединения с абонентом, сигнал вызова придется подавать всем сотам, входящим в LA, что также ведет к неоправданному росту передачи служебной информации и перегрузке внутренних каналов сети.

Теперь рассмотрим очень красивый алгоритм так называемого handover`ра (такое название получила смена используемого канала в процессе соединения). Во время разговора по мобильному телефону вследствие ряда причин (удаление "трубки" от базовой станции, многолучевая интерференция, перемещение абонента в зону так называемой тени и т.п.) мощность (и качество) сигнала может ухудшиться. В этом случае произойдет переключение на канал (может быть, другой BTS) с лучшим качеством сигнала без прерывания текущего соединения (добавлю — ни сам абонент, ни его собеседник, как правило, не замечают произошедшего handover`а). Handover`ы принято разделять на четыре типа:
1. смена каналов в пределах одной базовой станции
2. смена канала одной базовой станции на канал другой станции, но находящейся под патронажем того же BSC.
3. переключение каналов между базовыми станциями, контролируемыми разными BSC, но одним MSC
4. переключение каналов между базовыми станциями, за которые отвечают не только разные BSC, но и MSC.
В общем случае, проведение handover`а — задача MSC. Но в двух первых случаях, называемых внутренними handover`ами, чтобы снизить нагрузку на коммутатор и служебные линии связи, процесс смены каналов управляется BSC, а MSC лишь информируется о происшедшем.
Во время разговора мобильный телефон постоянно контролирует уровень сигнала от соседних BTS (список каналов (до 16), за которыми необходимо вести наблюдение, задается базовой станцией). На основании этих измерений выбираются шесть лучших кандидатов, данные о которых постоянно (не реже раза в секунду) передаются BSC и MSC для организации возможного переключения. Существуют две основные схемы handover`а:

"Режим наименьших переключений" (Minimum acceptable performance). В этом случае, при ухудшении качества связи мобильный телефон повышает мощность своего передатчика до тех пор, пока это возможно. Если же, несмотря на повышение уровня сигнала, связь не улучшается (или мощность достигла максимума), то происходит handover.
"Энергосберегающий режим" (Power budget). При этом мощность передатчика мобильного телефона остается неизменной, а в случае ухудшения качества меняется канал связи (handover).
Интересно, что инициировать смену каналов может не только мобильный телефон, но и MSC, например, для лучшего распределения трафика.
Поговорим теперь, каким образом происходит маршрутизация входящих вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее общий случай, когда абонент находится в зоне действия гостевой сети, регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной (или другой сотовой) системы на MSC домашней сети (вызов "находит" нужный коммутатор по набранному номеру мобильного абонента MSISDN, который содержит код страны и сети).
MSC пересылает в HLR номер (MSISDN) абонента. HLR, в свою очередь, обращается с запросом к VLR гостевой сети, в которой находится абонент. VLR выделяет один из имеющихся в ее распоряжении MSRN (Mobile Station Roaming Number, номер "блуждающей" мобильной станции). Идеология назначения MSRN очень напоминает динамическое присвоение адресов IP при коммутируемом доступе в Интернет через модем. HLR домашней сети получает от VLR присвоенный абоненту MSRN и, сопроводив его IMSI пользователя, передает коммутатору домашней сети. Заключительной стадией установления соединения является направление вызова, сопровождаемого IMSI и MSRN, коммутатору гостевой сети, который формирует специальный сигнал, передаваемый по PAGCH (PAGer Channel, канал вызова) по всей LA, где находится абонент.
Маршрутизация исходящих вызовов не представляет с идеологической точки зрения ничего нового и интересного. Приведу лишь некоторые из диагностических сигналов (таблица 4), свидетельствующие о невозможности установить соединение и которые пользователь может получить в ответ на попытку установления соединения.

Итак, промежуточный вывод.
Конечно, в мире нет ничего идеального. Рассмотренные выше сотовые системы GSM не исключение. Ограниченное число каналов создает проблемы в деловых центрах мегаполисов (а в последнее время, ознаменованное бурным ростом абонентской базы, и на их окраинах) — чтобы позвонить, часто приходится ждать уменьшения нагрузки системы. Малая, по современным меркам, скорость передачи данных (9600 бит/с) не позволяет пересылать объемные файлы, не говоря о видеоматериалах. Да и роуминговые возможности не так уж безграничны — Америка и Япония развивают свои, несовместимые с GSM, цифровые системы беспроводной связи.
Конечно, рано говорить, что дни GSM сочтены, но нельзя и не замечать появления на горизонте так называемых 3G-систем, олицетворяющих начало новой эры в развитии сотовой телефонии и лишенных перечисленных недостатков.
Экономическое сравнение использования GSM и NMT в условиях Беларуси читайте наwww.onliner.hitech.by.

Пирожков Дмитрий
При написании статьи 
были использованы
материалы Ixbt.com и Sotovik.ru


Сетевые решения. Статья была опубликована в номере 04 за 2001 год в рубрике технологии

©1999-2024 Сетевые решения